بررسی یاتاقان مغناطیسی
یاتاقان مغناطیسی که شافت را به جای تماس مکانیکی با نیروی مغناطیسی به حالت تعلیق در می آورند، چند دهه است که در صنعت مورد استفاده قرار می گیرند. یاتاقان های مغناطیسی مزایای فراوانی ، از جمله توانایی کار در سرعت های بالا و قابلیت عملکرد بدون روغن کاری در محیط خلاء را به استفاده کنندگان عرضه می کنند.
این یاتاقان ها بدون اصطکاک کار می کنند، فرسایش کمی دارند، در حین دوران ارتعاشات بسیار کمتری نسبت به بقیه یاتاقان ها ایجاد می کنند، می توانند مکان شافت را به دقت کنترل کنند، نیروهای خارجی وارد بر شافت را اندازه بگیرند و حتی شرایط کاری ماشین را تصویر کننده امروزه رشد تکنولوژی ، به ویژه در کنترل و پردازش دیجیتال، یاتاقان های مغناطیسی را به سوی طراحی نیرومندتر و به صرفه تر نسبت به گذشته هدایت کرده است. یاتاقان های امروزی برای محدودهی گسترده ای از کاربردها، از تجهیزات نیمه هادی گرفته تا میکرو توربین ها و کمپرسورهای سرد سازی و پمپهای خلاء مناسب هستند.
کاربردهای مختلف
طراحی منحصر به فرد و قابلیت های گسترده ی بلبرینگ های مغناطیسی، موجب کاربردهای مختلف آنها، به عنوان مثال در ساختن لایه های فابریک نیمه هادی ها و به ویژه در ساختن لایه های نازک سیلیکون، می شود بلبرینگ های مغناطیسی در این گونه کاربردها که به ارتعاش و لرزش بسیار حساسند، می توانند موجب افزایش پایداری شوند. از آنجا که بلبرینگ های مغناطیسی فاصله ی هوایی دارند، برای کارهای خاص بیولوژیکی استفاده می شوند. سلول های خونی و سایر مایعات می توانند از این فاصله ی هوایی بدون هیچ گونه خسارتی عبور کنند.
کمپرسورهای سردسازی، نمونه ی دیگری از کاربردهای مهم بلبرینگ های مغناطیسی هستند. بلبرینگ های مغناطیسی می توانند در سرعت های بالا که کورد نیاز مبرد های جدید است، کار کنند و بر خلاف بلبرینگ های معمولی که با روغن خنک می شوند، هیچ تاثیری از جهت ایجاد آلودگی روی مبرد ندارند. بلبرینگ های مغناطیسی همچنین می توانند به طور دقیق عایق بندی شوند و لذا برای فرایندهایی که با سیالات مخرب سرو کار دارند، قابل توجه هستند.
مزیت بلبرینگ های مغناطیسی
بلبرینگ های مغناطیسی بدون هیچ گونه تماسی کار می کنند. این منجر به خصوصیات ویژه ای می شود که گستره ی کاربرد این بلبرینگ ها را وسعت می بخشد. برای کاربردهایی که دارای یکی از خصوصیات زیر هستند، عموما بلبرینگ های مغناطیسی سودمند هستند.
عدم نیاز به روغن کاری
سیستم های روغن کاری برای بقیه ی انواع یاتاقان ها ، گران قیمت، غیر قابل اطمینان و غیر ایمن هستند. روان کننده ها برای محیط زیست خطر آفرین هستند و دور ریختن آنها هم معضل دیگری است. در صورتی که هیچ کدام از این موارد برای یاتاقان های مغناطیسی مطرح نیست.
ایمنی:
این بلبرینگ ها از لحاظ ایمنی قابل مقایسه با موتورهای الکتریکی هستند و معقول است که انتظار داشته باشیم عمری حدود ۱۵ تا ۲۰ سال داشته باشند. سیستم کنترلی آنها هم یک عمر پایدار نسبی پنج ساله دارد که قابل مقایسه با عمر اجزای الکتریکی معمولی است.
کاربرد در خلاء :
محیط های با خلاء زیاد برای خنک کننده ها ، محیط های ناسازگاری برای فعالیت هستند. بسیاری از سیستم ها در خلاءهای بالا ( 16-10 torr ) به شدت به آلودگی خنک کننده های با شرایط متغیر، حساس هستند.
ارتعاش کم
بلبرینگ های مغناطیسی برای کاربردهایی که به ارتعاشات دستگاه حساس هستند، بسیار مناب هستند.
اندازه گیری نیرو:
کنترل کننده می تواند مقدار و جهت نیروی بلبرینگ ها را با اندازه گیری جریان و موقعیت آن اندازه بگیرد که این خصوصیت بسیار ویژه ای برای طراحان است. این نیروها با دقت پنج درصد قابل اندازه گیری هستند.
کاهش مصرف انرژی :
بلبرینگ های مغناطیسی، نیروی اصطکاک را کاهش داده و بازده دستگاه را افزایش می دهند. عدم نیاز به سیستم خنک کاری هزینه های مربوط به پمپ ها و فن های سرد کننده را کاهش می دهد.
نمایش شرایط کاری:
بلبرینگ های مغناطیسی قابلیت نمایش شرایط کار کرد را دارند که این ، نیاز به وسایلی نظیر سنسورهای ارتعاشی و یا شتاب سنج ها را از بین می برد. علاوه بر آن از طریق سیستم کنترلی بلبرینگ های مغناطیسی، به طور مستقیم شافت و سیال کاری قابل مشاهده است.
کنترل فاز:
امروزه پردازشگرهای دیجیتالی کارهای بیشتری غیر از کنترل بلبرینگ های مغناطیسی انجام می دهند و باعث افزایش مزیت بلبرینگ های مغناطیسی نسبت به بلبرینگ های ساده می شوند که از جمله ی آنها می توان کنترل فاز را نام برد. طرح هماهنگی شافت با سیگنال های خارجی ، عملیات تطابق شافت را (فاز) تا 0/05 مقدار مرجعش در سرعت هایی حدود ۳۶۰۰۰ دور در دقیقه موقعیت دهی می کند. کنترل فاز در عملیاتی مثل جداسازی نوترون کاربرد دارد.
آلودگی ( ألایندگی):
فرایندهایی که به آلودگی های بسیار کم نیز حساسند از یاتاقان های مغناطیسی که دارای قطعات و میله هایی از جنس فولاد ضد زنگ، هستند سود می جویند با ظهور ورقه های بسیار نازک نیمه هادی ۳۰۰ میلی متری و یا ابزارهای با اندازه حدود mm0/25 حذف آلودگی های کوچک امری ضروری به نظر می رسد.
فاصله هوایی:
بعضی کاربرد ها از عملکرد بدون تماس استفاده می کنند. به عنوان مثال در بیوتکنولوژی، پمپهای قلب یا مخلوط کننده ها ، از عدم ایجاد بین سطوح تماس برای جلوگیری از وارد کردن آسیب به سلول ها، استفاده می کنند. در نساجی، تارها و نخ ها می توانند از فاصله ی هوایی رد شوند. فاصله ی هوایی می تواند تا ۲ mm باشد.
سرعتهای بالا
سرعت توسط مقاومت مکانیکی شافت محدود می شود. سرعت خطی ( محیطی ) در یاتاقان های شعاعی در حدود dn 3/5*106 ( قطر rmp * mm ) می باشد. هنگامی ارزش این خصوصیت را بیشتر در می یابیم که می فهمیم روغن کاری در این شرایط بسیار مشکل است.
اجزا یاتاقان مغناطیسی و عملکرد هر یک :
یاتاقان های مغناطیسی با اعمال جریان الکتریکی به بخش های ثابت و متحرک ( به ترتیب استاتور و روتور ) باعث معلق شدن محور بوسیله نیروهای جاذبه آهنرباهای الکتریکی می شوند. این مسئله باعث ایجاد یک مسیر شار مغناطیسی می شود که هر دو قسمت استاتور و روتور و فاصله هوایی جداکننده آنها را در بر می گیرد. این فاصله هوایی همان عاملی است که باعث عملکرد بدون تماس یاتاقان های مغناطیسی می شود. هنگامی که فاصله هوایی بین این دو قسمت کاهش می یابد، نیروی جاذبه افزایش می یابد. بنابراین آهنرباهای الکتریکی ذاتا ناپایدارند. پس به یک سیستم کنترلی نیازمندیم تا بتواند جریان اعمالی به سیم پیچ ها را تنظیم کرده و پایداری نیروها را تامین کند و در نتیجه موقعیت روتور را تثبیت نماید.
فرایند کنترل با تعیین و اندازه گیری موقعیت روتور توسط سنسورهای موقعیت آغاز می گردد. سیگنالهای تولید شده این سنسور توسط کنترل الکترونیکی دریافت شده و با موقعیت مطلوب روتور که در ابتدای راه اندازی ماشین به آن داده می شود، مقایسه می گردد. وجود هرگونه اختلاف بین این دو سیگنال باعث آغاز عملیات محاسبه نیروی لازم برای باز گرداندن شافت به موقعیت مطلوب آن می شود. نتایج این محاسبات به صورت دستوری به تقویت کننده هایی که به استاتور یاتاقان مغناطیسی متصل اند فرستاده می شود.
جریان افزایش یافته و سبب افزایش شار می شود. افزایش شار مغناطیسی، افزایش بین نیروی استاتور و روتور را به دنبال دارد که در نهایت به حرکت روتور به سمت استاتور در امتداد محور مورد کنترل می انجامد. همه عملیاتی که در بالا ذکر شد، هزاران بار در ثانیه تکرار می شود و باعث کنترل دقیق ماشین های دوار در سرعت هایی بیش از ۱۰۰۰۰۰rpm می شوند.
یاتاقان ها و سنسورها:
برای انجام حمایت از محور در بیش از یک جهت ، قطب های مغناطیسی بر روی محیط یاتاقان شعاعی آرایش می یابند. شکل زیر را ببینید.
ساختار یاتاقان شعاعی بسیار شبیه موتور الکتریکی است و از تجمع ورقه های فولادی تشکیل شده است سیم پیچ ها به دور آنها پیچیده می شوند. از ورقه های فولادی در روتور نیز برای کاهش جریان های گردابه ای استفاده می شود. این جریانها خود عاملی برای اعمال یک نیروی کششی بر روی روتور و ایجاد حرارت در برخی نقاط می شوند. سنسورها نیز بر روی محیط استاتور آرایش می یابند و معمولا در داخل یک حلقه یا یک لوله اخنصاصی و در مجاورت قطب های استاتور قرار می گیرند.
سنسورهای القایی که مورد استفاده قرار می گیرند، اندوکتانس فاصله هوایی بین سنسور و روتور را اندازه می گیرند. در راستای هر محور دو اندازه گیری انجام می شود و موقعیت مرکز روتور نیز به وسیله یک مدار پل محاسبه می شود. به یک ماشین معمولی در جهتهای شعاعی و محوری نیرو وارد می شود. معمولا از یک جهت یابی ۵ محوری در یاتاقان های مغناطیسی استفاده می شود که شامل دو یاتاقان شعاعی ( که هر یک در محور دارند ) و یک یاتاقان کف گرد ( با یک محور ) می شود. یاتاقان کف گرد یک مسیر شار بین روتور دیسکی شکل و دو استاتور در دو طرف آن ایجاد می کند شکل یک یاتاقان کف گرد که بر روی محور موازی شده است در زیر آمده است:
سیستم کنترل یاتاقان مغناطیسی
سیستم کنترل از سه بخش زیر تشکیل شده است:
١ – پردازشگر سیگنالهای دیجیتال (DSP)
۲ – تقویت کننده ها
3 – منبع تغذیه
مدارات دیگری نیز وجود دارند که وظیفه اصلاح سیگنال های دریافت شده از سنسورهای موقعیت و نیز تبدیل خروجی های پردازشگر سیگنال به ورودی هایی برای تقویت کننده ها را بر عهده دارند. بنابر این این امکان برای کاربر ماشین ایجاد می شود که بتواند اطلاعاتی را در مورد موقعیت مطلوب روتور وارد کرده و منطقی را تعریف کند که موقعیت روتور با شرایط کاری مختلف ماشین هماهنگ شود ( منظور از شرایط کاری مختلف ماشین، راه اندازی ، گرم کردن، حالت خاموش و … است )
منبع : تحریریه مهندسی دانلود